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Numerical methods for the solution of the initial value problem ill ordinary 
differential equations fall mainly into two categories: multi-step methods and Runge- 
Kutta methods. For these and for some closely related methods, the convergence 
of the numerical solution to the exact solution as the step size tends to zero, has 
been studied by a number of authors [1, 2, 3]. It is the aim of the present paper to 
make a similar study for a fairly general class of method which includes both main 
classes of method as special cases. Also, it is applicable to methods which combine 
features common to both multi-step and Runge-Kutta methods such as the methods 
of Urabe [4], Gragg and Stetter [5] and Gear [6]. 

Although the standard treatments of convergence theory can be simply modified 
to include these new methods, there is some advantage in having a theory which 
includes them in a completely natural way. It is hoped also that some previously 
untried but useful methods may be suggested by the formalism of this paper. 

The initial value problem we suppose can be written in the form 
(1) 

dy~~~~~ f f(y), y (xo)= 
dx 

where y is a point in the (real) Euclidean Al-space RK and f(y) is a mapping of R. 
onto itself satisfying the Lipschitz condition 

(2) f(y) -f(z) L I y-z , 

for any pair of points y, z E RM. L is a constant and I v J for v E RM denotes a 
norm. Although the particular norm used is irrelevant for most purposes, a number 
of details in the results of this paper take a simpler form if the norm used is defined 
by 

(3) v =max { v1, v2 , vj v 1 

Vl v2 vM denoting the components of v. Accordingly, we adopt (3) asthe 
definition of I v 1. 

It will be necessary to consider sets of points v1, v2, *2 , VNE RM and we shall 
regard such a set as corresponding to the point V = V, I V2 ? ... * VN E RMN. 
The norm of V C RMN will be defined in a similar way to (3) and a similar notation 
I V I will be used. Clearly 

(4) VI =max { vI, v2|, ,I VNIj. 

We will have to make use of mappings from RMN to RMN such as V -> W = 

0) W2 D ... WN, where 
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N 

(5) Wi =E aijvj, i= 1, 2, N, 
j=l 

arid al , a12, y aN are elements of a matrix A. For this mapping we shall use the 
notation 
(6) W = [A]V, 

so that [A] is a linear operator on RMN to RMN. I A I will denote the norm 
maxi I,?=] 1 a1j I so that 

(7) I[A]V I < I A I A V 1 

Another type of mapping that will arise is that given by V -4 W, where 

(8) wi = f(v,), i = 1, 2,.., N 

and f is the function occurring in. the statement of the initial value problem (1). WVe 
shall write 

(9X W = F(V) 

to denote this mapping and we see that F satisfies a Lipschitz condition with the 
same constant L as for f. 

We are slow in a position to formulate the general method with which the rest of 
this paper is concerned. It consists of the performance of a sequence of steps num- 
bered 1, 2, 3, ... such that at the start of step n, N points in RM are given. We denote 
t these by y, , Y2 

(n-i) 
, 

(n-1) and write ny 
(n-i) (n-1) Go Y2(n-i) . 

(O YN~ -i) At the end of the step y(n) = yi 0 yn 3 0 * 0 YN(n) is given by 
N N 

(10) yi(n) = Z jjyj (-1) + h E Ibijf(yj(n)) + c f(yj(n-l))} 
j=i 

~ 

which can be written as 

(11) y(n) = [A]y(n'1) + h[B]F(yin)) + h[C]F(y(n-) ), 

where the matrices A, B, C with elements aij, bij1 cuj (i, j = 1, 2, * *, N) character- 
ize the method. We interpret yj (n-i), Y2l, , YN(n-l) as approximations to y(x) 
for a set of N values of x and yi , Y20 (, ..., yA as approximations wAhen the values 
of x are each increased by h (the step size). Fhor simplicity with no loss of generality 
we shall assume h > 0 and that the method is used to find y(x) only when x > xo . 

The method defined by A, B, C will be denoted by (A, B, C) and in the particular 
case when C is the zero matrix by (A, B). There is no loss of generality in consider- 
ing only methods of this last form since (A, B, C) is equivalent to (A, B), where 

(12) A=[ ?], 

(13) B=[g g] 

anld 0, I are the N X N zero matrix and unit matrix respectively. 
Before proceeding, it must be remarked that (11) is of the form 

(14) y(n) = G (y(n) ) 
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and in general does not define y(u) explicitly. However, if Y = y1 0 Y2 0 0 YN 

and Z = Z1 0 Z2 (0 * *0 ZNare any two points in RMN, then 

(15) I G(Y) - G(Z) I = hl [B]{F(Y) - F(Z) ? | < hLI B I 1 Y - Z 

so that if 

(16) h < 1/(LI B [) 

then Y -> G(Y) is a contraction mapping. Thus if h is sufficiently small, y(n) is 
defined uniquely by (11) and may be evaluated iteratively. For a computer realiza- 
tion of the procedure for evaluating y(), it iis more convenient to use an iteration 
process based on the equation 

(17) y(n) = G(y(n)) 

where G(Y) = g1(Y) (0 g2(Y) 0 Do 0 gN(Y) is related to G(Y) = g1(Y) @ 

g2(Y) 3 *. 0 gN(Y) by 

gl(Y) = gl(y1 Y2 i YN), 

g2(Y) = g2(gl(Y) 0 Y2 Y * * YN), 

( 18) 93(Y) = g3(91(Y) 0 g2(Y) 0 0 YN), 

gN(Y) = gN(gl(Y) A g2 (Y) 0 * 0 gN-1(Y) 0 YN) 

With the norm defined by (3), it is trivial to prove that Y -* G(Y) is a contraction 
mapping if the same is true for Y -- G(Y), so that (16) is sufficient for either 
type of procedure. 

To illustrate the variety of methods that can be written in the form (A, B) we 
note that the multi-step method given by 

(19) Yn = qlyn-i + * * * + qkyn-k + h(rof(y.) + rif(yn-1) + ..* + rkf(yY-k)), 

where y. denotes the numerical solution at the point xo + nh, is equivalent to 
(A, B) with N = K + 1 and 

[0 1 0 ...o 

0 0 1 ... O 

(20) A L J 

0 0 0 ... 1 
? qk qk-1 ... * l_ 

(21) B=[. . rk. . 

rk i-k-1 rk-2 ... ro_ 

On the other hand an N -1 stage Runge-Kutta process takes the form (A, 13) 
with 
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(22) A=[0 0 . 1, 

LO 0 0 ... 1 

r0 00 ... 01 
b2l 0 0 ... 0 

(23) B= b31 b32 0 0- ?. 

bNl bN2 bN3 ... J 
In the example of the classical fourth order process we have 

Fo 00 001 
21 0 0 00 

(24) B= 0 20 0 01. 
0 0 1 0 0 

A final example we consider is neither a linear multi-step nor a Runge-Kutta 
mnet hod. It has the form (A, B) where 

Fo 0 00 1 
O 0 1 0 0 

(2.5) A= 0 0 0 0 1, 
0 0 0 0 1 

Lo 0 0 'J 
0 0 0 1 

(26) B = 3 0 0 0 
-2 1 2 0 0 
L 6 0 3 6? 

As it happens, this method yields values of y6 () which differ from y(xo + nh) by 
about the same amount as for the classical Runge-Kutta method if it is started by 
the formulae y5(O) = n, y3(0) = n - 'hf( n). It has the advantage over 4th order 
Runge-Kutta methods in that it requires only three derivative calculations per step. 

We shall not be concerned in this paper with methods of obtaining the starting 
vector Y(O) but we shall suppose this is done in such a way that in the limits as 
h 0O .i yt(0) -> n for i = 1, 2, ..., N. We now define convergence as follows: 

1. (Definition). (A, B) is said to be convergent if for any initial value problem (1) 
satisfying (2), the following statement can be made: If (A, B) is used to compute 
y(v) with step size h = (x - xo)/l, where Y(O) is given in such a way that I Y(?-n aD 
n a 3n } as v so then I Y(v) - y(x) (9 y(xz) (D ... y(x) | 0 as 

Just as for linear multi-step processes it is convenient to introduce concepts of 
consistency and stability for (A, B). However, it is convenient first of all to con- 
sider A bv itself. 
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2. (Definition). A is consistent if As = s, where s is the vector in RN with every 
component equal to unity. 

3. (Definition). A is stable' if there is a constant a such that for any positive 
integer n 

(27) A nI < a. 

The following results are consequences of these definitions. 
4. If all eigenvalues of A have magnitude less than 1 except for a simple eigenvalue 

at 1, A is stable. 
5. If A is stable, no eigenvalue has magnitude greater than 1. 
6. If A has minimal polynomial P(z), then A is stable if and only if no zero of 

P(z) exceeds 1 in magnitude and all roots of magnitude I are simple. 
7. A is stable if and only if there is a nonsingular matrix T such that 1 T'1 A TI ? 1. 
8. If A is consistent and has only non-negative elements, then A is stable. 
9. A given by (12) is stable if and only if A is stable. 
10. A given by (12) is consistent if and only if A is consistent. 
11. A given by (20) is stable if and only if no zero of 

(28) Q(z) = Z - qizk1 - q2zk - 

exceeds 1 in magnitude and all zeros of magnitude 1 are simple. 
12. A given by (20) is consistent if and only if Q(z) given by (28) has a zero equal 

to 1. 
13. A given by (22) is stable. 
14. A given by (22) is consistent. 
Proofs. 10, 12 and 14 are immediate consequences of the definition of consistency. 

4, 5 and 11 are trivial consequences of 6. 13 is an example of 8 which follows from 
7 with T = I. 9 is immediately seen from the obvious formula 

(29) An Afl 01 
so that IAn = max (I An i An l). 

It remains to prove 6 and 7. Let the Jordan canonical form of A be (XI, + 81J1) 
(D (X2I2 + 62J2) @ ... @ (XJe + &,J8), where the orders of the various blocks 
arer1,r2, * ,rssuchthatri + -2 + * + r. = N.I (i = 1,2, i ,s) is the 
r i X ri unit matrix and Ji is the ri X ri matrix with every element zero except those 
immediately below the main diagonal and these are unity. The Xi correspond to the 
eigenvalues of A and the ai are arbitrary non-zero numbers. If for any i, ri = 1, J? 
consists of the 1 X 1 zero matrix and the term 3Ji is omitted in such a case. Con- 
sider the three statements 

Si :I IXi < 1 fori = 1,2, *2 , sandforall isuchthat I Xi = l, i= 1. 
S2: T exists such that I T'1A T ? 1. 
S3: A is stable. 

From the relationship between the Jordan canonical form and the minimal 
equation we see that 6 asserts the equivalence of S1 and S3. Also 7 asserts the 
equivalence of S2 and S3. We will thus have proved 6 and 7 when we have shown 

1 In the theory of linear operators, the term "power-bounded" is used for this property. 
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that S1 =? S2, S2 => S3, and S3 => Si . To deduce S2 from Si we choose T so that 
T-1A T is the Jordan canonical form with bi = 1 - I Xi for every i for which 
ri > 1. S3 follows from S2 since I A' I = I T(T-1AT)'T-1 < I T I I T-1 1. Finally 
we deduce Si from S3 by noting that I (XiIi + zJii)nl I> I X In for all i and that 
I (X'Ii + biJi)n I > nj Xi IXn-1 Ii I whenever ri > 1L 

We now state two necessary conditions for convergence. 
15. If (A, B) is convergent, A is stable. 
16. If (A, B) is convergent, A is consistent. 
Proofs. To prove 15 we suppose that (A, B) is convergent but A is not stable 

and we use (A, B) for the solution of the initial value problem defined by M = 1, 
f = 0, 1 = 0, xo = 0, x = 1. Let an = A I and let vn E RN be such that Anvn I 
= anX I = 1. Furthermore, let O3n = max (al , a2 X** an) and define wn = n3jvn 
so that, since A is not stable, I wn - 0. If we choose y(O) as w^, write h = 1/v 
and perform the solution to the initial value problem using (A, B), we find 
Y(v) = A'w,. Since the method is convergent and the true solution is y'(x) = 0, 
we have I Aw, l- 0 as v -* oc. But I Aw = a,/O3, which equals 1 for an infinite 
set of values of v. 

To prove 16, we assume (A, B) is convergent and apply it to the solution of the 
initial value problem defined by M = 1, fl = 0, ql = 1, xo = 0, x = 1. We choose 
Y(O) = s independently of v, so that convergence implies that I A's - s l 0 
as v so. But 

As - s < IAr's - As + IAr's - s 

< IA -IAs - s + IA+1s - s 

-*0 

so that As = s. 
Further definitions and theorems now follow. 
17. (Definition). (A, B) is semi-consistent if A is consistent and if there is a, 

t E RN and a scalar c such that 

(30) At + Bs = t + cs. 

18. (Definition). (A, B) is stable if A is stable. 
19. If (A, B) is stable and semi-consistent, the value of c in (30) is unique. 
Proof. If (30) were also satisfied with t, c replaced by t', c' where c X c', 

we would have A(t - t') = (t - t') + (c - c')s so that t - t' is a member of the 
null space of (A -_ )2 but not of A - I. Hence, the minimal equation of A con- 
tains a repeated unit root contrary to 6. 

It may be remarked that t iil (30) is not unique but may be altered by the addi- 
tion of any null vector (for example s) of A - I. 

20. If A is consistent and the characteristic equation of A has only a simple root 
at 1, then (A, B) is semi-consistent. 

Proof. Let V be the range space of A - I so that V is of dimension N - 1 
and s E V. Hence, an arbitrary vector of RN can be written as a linear combination 
of s with a member of V. Write c as the component of s in Bs and the result follows. 

21. (Definition). (A, B) is consistent if it is semi-consistent and the value of c 
in (30) is 1. 
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22. If (A, B) is semi-consistent with c # 0, (A, (1/c)B) is consistent. 
The proof of this result is immediate. Before proceeding further we return to 

the examples (A, B) given by (12), (13), by (20), (21) and by (22), (23). 
23. (A, B, C) is semi-consistent (that is, (A, B) given by (12), (13) is semi- 

consistent) if and only if A is consistent and t E RN and c exist such that 

(31) At + (B + C)s = t + cs. 

24. If A given by (20) satisfies the conditions of 11 and 12 so that A is stable and 
consistent, and if B is given by (21), then (A, B) is semi-consistent with 

c = (rO + rl + *-- + rk)/(ql + 2q2 + . + ke). 
25. If A is given by (22) and B by (23), then (A, B) is stable and semi-consistent 

With c = biv, + bN2 + ... + bN,N1. 

Proofs. 23 follows by noting that (31) is equivalent to 

(32) Ai + M = t + cg, 

where t = t G (t - cs), s = s (D s. 24 can be verified immediately with t in (30) 
such that its component number i is -c(k + 2 - i). The part of 25 not included 
in 13 and 14 is an example of 20. It may be remarked at this point that the con- 
sistency and stability of (A, B) where A, B are given by (25), (26) follow in a 
similar way. 

We now come to the two main theorems. 
26. If (A, B) is convergent, it is stable and consistent. 

Proof. In view of 15 and 16 we may assume A is stable and consistent if 
(A, B) is convergent. We need only prove that there is a t E RN such that 

(33) At + Bs=-t + s. 

As for the proofs of 15 and 16 we prove this result by considering a special example. 
We take M = 1, fl = 1, n' = 0, xo = 0, x = 1 and Y(O) = 0 independently of v. 
With h = 1/v we find 

(34) Y(V) (Av A+A 2+ +I)Bs 
v 

and for convergence, this must tend to s as v -* oc. Since A is stable, the range space 
and the null space of A - I are disjoint so that we may write Bs - s = (I -A )t + v 
where v is in the null space of A -I. Substitute into (34) and we find 

,(5) Y (1) _S= 1 (I A1J)t + v 
v 

so that 

lv ? 1Y(v) - s +- (1 + IAV) -0 
v 

as v -* co. Hence v = 0 so that (33) follows. 
27. If (A, B) is stable and consistent, it is convergent. 
Proof. Let t in (33) have components ti, t2, . * * , tN . We may assume by the 

remark following 19 that none of t1, t2 . * tN is negative. We write 

(37) (n) 
= y(xo + h(n + ti)) 
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for i = 1, 2, , N; n = O 1, - where y(x) denotes the true solution to the 
initial value problem (1). Also we write H(n) = nin) G n2 (n * 0 nN (n) So 

that, by the continuity of y(x), convergence will be proved when we have shown 
that as v oc with h = (x - xo)/v and - Y )-H(?) 0 O then I Y()- HI() I- 0. 
It will be assumed that h is no more than some fixed ho satisfying (16). 

Let En = el(n) @ e2(n) ? .. eNwn) be the truncation error in a single step 
defined by 
(38) E(n) = H(n) _ [A]H(n-1) h[B]F(H(n)). 

Our first task is to estimate E('). We have 

yk(xo + h(n + ti)) - yk(xo + h(n - 1 + ti)) 

= h(1 + t - tj)f(y(xo + h(n + Ok))) 

by the mean value theorem, where Ok lies between tI - 1 and t,. Hence we have 

(40) y(xo + h(n + ti)) - y(xo + h(n - 1 + tj)) 

- h( 1 + t - tj)f (y(xo + nh) ) u, 
where 

(41) u ? < h2Lmj 1 + t- max (ti 1 -tj L) 

stnd i, is the maximum of the (continuous) function I f(y(x)) j for 

x E [xo, x + ho max tl , t2, ,tN)]. 

MIultiplying (40) by a,1j and summing over j we find 

(O 
N IN.\ 

|, - 
(r aCj nj" _ h bij f (y(xo + nh)) 

j=l j=l 

N 
(42) = aijini (n-I) - h(1 + t, - tj)f(y(xO + nh))i 

j~l 
N 

< h2L7xf a,, 1 + 1, - tI max (ti, ,l-tj )}. 
j~l 

Similarly we have 

(43) f(n, n) -f(y(zo + nh)) < ? htjLmt 

so that 
N (N \ N 

(44) h Z bi- f(n (n)) - h bj f(y(xo + nh)) < h2Lm , bij tj. j=1 j-1k j==1 
Combining (42) and (44) we find 

(45) e"(n) I < h2Lml, 

where 1, is given by 
N 

(46) 1i = fl at 1IlI 1 + tj - tj I max (ti, 1 - tj I) + I bI {tit. 

We write for 1 for the vector in RN whose typical component is 1i. 
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For the accumulated error we use the symbol Z~n1 = Z=~n) E Z2n E ... E 

ZN(n) and define this quantity by z(n) = H(n) _ y(n). We also write F(H"") - 

F(y(n)) = W"n) = w (n) ( W2(n) ED (3 W'V sO that I W(n ) I < LI Z 1. 
Thus wemay write 

(47) Z(n) - [A]Z(n-1) - h[B]W(n) -E= 

so that 

Z(n) = [An]Z(?) + h( [B]W(n) + [AB]W(n-1) + + [A 'B]W l) 

+ E(n) + [A]E(n-1) + ... + [An-]E1(). 

We now choose constants a, f, y such that I A" I _ a, AW ' <B , I A"1 ? < 
for n = 0 1, 2, ... and use (45) with (48) to find 

<9 1Z ? Z(?) I + h1(3 W(n) i + WI(n-1) i + + I W(') + nh2Lmy 
< a(l Z(I ) + hLf(I Z(n) I + I Z(n-1) I + + IZ 1) +nh 2Lmy. 

Hence, it follows that I Z(n) _(n), where E?) = aI Z(?) I and 

(50) (n) = E(() + hLf3(,(n) + (n-1) + + (1)) + nh 2Lmy, n > 1. 

Thus 

(51) - = hLj3E" + h2Lmy, n > 1, 

so that 

(E(n) + hm/13) = (1 - hLo)-1( '(n-1) + hmy/f3) 

(52) = (1 - hL)-n(E(O) + hmy/,3). 

If we suppose that h ? ho where ho, besides satisfying (16) also satisfies hoLf < 1, 
wve have 

(53) (1 - hL,") ? expt njL ) 

so that, writing n = v in (52) and using (53) we find 

iZv) I < C(v) < a I Z(?) I exp ((ix jx ) + (x -xo)my 

(54) (ex { (x-xo)L0 _ 

and the right hand side tends to zero as v -* oo. 
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